If it's not what You are looking for type in the equation solver your own equation and let us solve it.
74b^2=16
We move all terms to the left:
74b^2-(16)=0
a = 74; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·74·(-16)
Δ = 4736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4736}=\sqrt{64*74}=\sqrt{64}*\sqrt{74}=8\sqrt{74}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{74}}{2*74}=\frac{0-8\sqrt{74}}{148} =-\frac{8\sqrt{74}}{148} =-\frac{2\sqrt{74}}{37} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{74}}{2*74}=\frac{0+8\sqrt{74}}{148} =\frac{8\sqrt{74}}{148} =\frac{2\sqrt{74}}{37} $
| 1,6x+0,8=0,8x+1,6 | | X+32=3x-36 | | 1,6x+0,8=0,8x+1,6 | | X-15=2x+24 | | X+3*2+2x-4*2=22 | | 7a=-5a+24 | | (x+14)(x-3)=0 | | 6n-11=13 | | 5x-2x+14=26 | | 5x-2x+20=-40 | | 18+y=2y | | 2x/3+1=7x+15+3 | | x=7=3x+5 | | X/2-x+2/3=5 | | 14x+3=6x+8 | | -2,5x^2+12x-3,95=0 | | -2.5x^2+12x-3.95=0 | | -x+1=2x-2-3x | | 5x+2=2x+16 | | 6=7x-36 | | 6=7x36 | | 4x-7=1-6x | | 6f-1+2f=19 | | x=(2x+6)(3x-15)=0 | | 30=7x-2 | | x/3=2x-1/ | | 8(3w+10)/3=8 | | 12=-12-5y | | 12+18x-7x+35=35=-8 | | y^2-24y+72=0 | | 4/8=8/a | | (4x+11)+(x+14)=180 |